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Levelized Product Cost: Concept and Decision Relevance

Abstract:

This paper examines a life-cycle cost concept that applies to both manufacturing and service

industries in which upfront capacity investments are essential. Borrowing from the energy

literature, we refer to this cost measure as the levelized product cost (LC). Per unit of output,

the levelized cost aggregates a share of the initial capacity expenditure with periodic fixed-

and variable operating costs. The resulting cost figure exceeds the full cost of a product,

as commonly calculated in managerial accounting. Our analysis shows that the LC can be

interpreted as the long-run marginal product cost. In particular, this cost measure is shown

to be the relevant unit cost that firms should impute for investments in productive capacity.



1 Introduction

Numerous surveys and studies have suggested that managers frequently rely on a product’s

full cost for a range of planning decisions, including product pricing.1 Some economists

have decried this practice as “irrational,” arguing that fixed costs are typically sunk and

therefore irrelevant for decision making. In particular, many industrial organization models

point to the issue of double marginalization when managers internalize a cost higher than

marginal cost (Sutton 1991, p. 28). The continued use of full cost for pricing and other short-

run decisions has prompted some economists to advocate behavioral models as alternatives

to the paradigm of fully rational decision-making in order to explain managerial practices

(Al-Najjar, Baliga, and Besanko 2008).

At the same time, the identification and measurement of marginal cost remains contro-

versial in economics (Pittman 2009; Carlton and Perloff 2005). This measurement issue has

been particularly prominent in antitrust investigations of excess profitability and monopoly

pricing. Surveying different strands of the industrial organization literature, Pittman (2009)

notes that many economic studies have used variable production cost as an effective proxy

for marginal cost. Pittman succinctly summarizes the resulting tension as follows: “It is

difficult to understand how a firm that sets prices at true marginal cost is able to survive as

a going concern unless that true marginal cost includes the marginal cost of capital.”2 This

paper confirms the notion that from a long-run planning perspective the “true marginal cost”

must include the cost of capital (capacity) as well as periodic fixed costs to be incurred in

later periods. We demonstrate that this long-run marginal cost exceeds the measure of full

cost as commonly calculated in managerial accounting.

Accounting textbooks, such as Horngren, Datar, and Rajan (2012) or Zimmerman (2010),

portray the importance of full cost as a benchmark for breaking even in terms of accounting

profit. The corresponding measure of full cost typically includes charges related to deprecia-

tion and fixed overhead costs. For short-run decisions, like product pricing, these textbooks

1According to the survey by Govindarajan and Anthony (1983) more than 80% of respondents use a

product’s full cost when setting list prices. Similar findings were obtained in later studies by Shim and Sudit

(1995), Drury, Osborne, and Tayles (1993), and Bouwens and Steens (2008). The extensive survey evidence

on intracompany pricing also points to full cost as the prevalent basis for valuing transfers of goods and

services in vertically integrated firms; see, for instance,Eccles (1985).
2Borenstein (2008) suggests that economies of scale can defuse the tension between marginal cost pricing

and non-negative economic profits.
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advocate the use of incremental costs which typically exclude fixed costs but include vari-

able cost and applicable opportunity costs. For long-run decisions, such as those in plant,

property and equipment, accounting textbooks generally do not advocate an accrual-based

measure as the relevant cost. Instead they follow the standard corporate finance prescrip-

tion of evaluating the stream of discounted cash flows associated with a particular decision.

While this approach is uncontroversial, it does not point to a measure of relevant cost for

capacity investment decisions.

The central concept of this paper is the so-called Levelized Cost (LC). Borrowing from

the energy literature, which coined the term Levelized Cost of Electricity, this concept is a

formalization of the following verbal definition: “the levelized cost of electricity is the constant

dollar electricity price that would be required over the life of the plant to cover all operating

expenses, payment of debt and accrued interest on initial project expenses, and the payment

of an acceptable return to investors” (MIT 2007). We note that LC is defined entirely in

terms of cash flows and calibrated as the minimum price that investors would have to receive

on average in order to break-even in terms of discounted cash flows.3

The first part of our analysis demonstrates that the LC can be calculated as a fully loaded

cost in a way that is similar to how accounting textbooks typically determine the full cost

of a product.4 This alignment, however, requires depreciation to be calculated so that book

values reflect the replacement cost value of assets (Rogerson 2008). In addition, the measure

of full cost has to include capital charges on the remaining book value of the capacity assets

and the overall capacity charge must be marked up by a tax factor that reflects the delayed

amortization of the investment for income tax purposes. The inclusion of imputed interest

charges and the tax factor cause our measure of fully loaded cost to exceed the usual concept

of full cost in management accounting.

3The LC concept is naturally related to the notion of life cycle costing in the cost accounting literature;

see, for instance, Horngren, Datar, and Rajan (2012), Atkinson et al. (2011), Coenenberg, Fischer, and

Günther (2012), and Ewert and Wagenhofer (2008). All of these approaches seek to aggregate product

related costs over different stages of the product’s life cycle. In contrast, our LC concept is concerned with

the cost of producing a good or service at a particular facility.
4In a similar vein, Küpper (1985; 2009) advocates for cost accounting to provide cost measures that can

be used for investment decisions. To that end, Küpper also develops an accrual-based cost metric that

is consistent with present value considerations. Küpper (2009) demonstrates the use of this concept in the

context of multiple long-term decision problems including production planning and the identification of price

floors for individual products.
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We then examine the economic relevance of the LC concept for alternative market settings

including those where firms can set prices and those where competition forces price taking

behavior. Given the break-even conceptualization of the levelized cost, one might expect that

in a competitive market with price taking firms the equilibrium price will, “on average,” be

equal to the levelized product cost. We confirm that in a competitive equilibrium, the present

value of future expected market prices is equal to the annuity value of the levelized product

cost, where the annuity is taken over the life-cycle of the productive facility. Furthermore,

in a stationary environment, where the distribution of market prices and production costs

do not change over time, the expected equilibrium market price will be equal to the LC in

each period. This finding confirms our interpretation of the levelized cost as the long-run

marginal product cost. It should be noted, though, that unlike the usual microeconomic

textbook description, long-run and short-run marginal cost will not coincide in equilibrium

due to the presence of capacity constraints. In fact, the former will always be below the

latter for any output level below the capacity limit.

The presence of capacity constraints will prevent prices from being bid down to the

variable cost of production, even in a competitive market. The aggregate capacity level in

equilibrium is shown to depend on the degree of price volatility in the product market. Our

notion of limited price volatility is that the maximal percentage deviation from the average

market price (holding quantity fixed) does not exceed the ratio of the unit variable cost to

the levelized product cost. This condition is more likely to be satisfied in capital intensive

industries. If this condition is met, firms in the industry will in equilibrium always deploy the

entire available capacity, even for unfavorable shocks to market demand, and the aggregate

capacity level will correspond to the expected demand at the market price corresponding to

the LC.

With significant price volatility, we find that the aggregate capacity in equilibrium will

be larger than that obtained in a setting with limited volatility. While this finding may seem

counter-intuitive at first glance, the argument is that firms retain the option of idling parts of

that capacity in subsequent periods under unfavorable market conditions. Only that portion

of the LC that corresponds to the capacity cost is a sunk cost. Since the market price will

not fall below the short-run marginal cost, that is, the unit variable cost of production, the

payoff structure associated with a capacity investment for firms effectively looks like a call

option and this option becomes more valuable with significant price volatility.
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For a firm with monopoly power in a stationary product market, we demonstrate that

the optimal capacity level satisfies the following condition: the expected marginal revenue

of output chosen optimally in each subsequent period, subject to the constraint imposed by

the initial capacity choice, is equal to the levelized cost, LC. At the same time, the marginal

revenue corresponding to full capacity utilization will generally be below the LC, unless the

condition of limited price volatility is met. Accordingly, the capacity level at which the

expected marginal revenue is equal to the LC constitutes a lower bound for the optimal

capacity level. One obtains a corresponding upper bound by imputing the levelized fixed

cost, defined as the LC less the unit variable cost of production. This adjustment reflects

that the variable cost portion of the LC is not a sunk cost in subsequent periods.

The pattern of results we obtain for competitive industries and monopolies extends to

oligopolistic competition. In particular, we consider a setting in which two firms choose their

output levels in a standard Cournot fashion in each period, given their variable production

costs and the constraints imposed by the initial capacity choices. For the first stage capacity

decisions it is then a (subgame perfect) Nash equilibrium outcome for each firm to choose a

capacity level at which the expected marginal revenue of output in future periods is equal

to the LC.

Our characterization of the levelized cost as the long-run marginal cost is consistent

with the findings in a number of recent studies (Rogerson 2008; Rajan and Reichelstein

2009; Nezlobin 2012; Nezlobin, Rajan, and Reichelstein 2012). In contrast to our model

framework, these studies rely on overlapping capacity investments in an infinite horizon

setting. Capacity can be added continuously on an “as needed basis.” Furthermore, market

demand is assumed to expand over time and there are no periodic price shocks. As a

consequence, firms never find themselves in a position of excess capacity. Our setting is

motivated by the observation that in many settings of interest, initial capacity investments

will turn out to be excessive for unfavorable realizations of market demand.

The main theme in this paper is also directly related to a branch of the managerial

accounting literature that has sought to provide a rationale for full cost pricing.5 This

literature concludes that the sufficiency of full cost for product pricing depends on several

conditions, including the timing of the pricing decision relative to the point in time when the

firm commits to capacity resources. Other conditions include whether capacity constraints

5Papers in this literature include Banker and Hughes (1994) Balakrishnan and Sivaramakrishnan (2001;

2002), Göx (2002) and Banker, Hwang, and Mishra (2002).
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are “soft” and whether firms learn additional information about the product market after

deciding on capacity levels. While our findings are consistent with this earlier literature,

the focus of our analysis is not on product pricing. Our primary goal is to identify a unit

cost measure that can effectively serve as the marginal cost for initial capacity investments.

The initial capacity choice, of course, anticipates the subsequent volume and pricing of the

product in response to subsequent market conditions, including the overall capacity levels

available in the industry. The resulting product prices are shown to be equal to the levelized

product cost plus some mark-up that varies with the extent of competition in the industry.

In particular, the mark-up on levelized cost is shown to be zero under atomistic competition,

and decreasing in the number of firms in the industry.

The remainder of the paper is organized as follows. Section 2 formalizes the Levelized

Product Cost (LC) concept and establishes how it relates to the customary measure of full

cost. Section 3 analyzes the equilibrium price and aggregate capacity level in a competitive

market setting with price-taking firms. We consider a market structure with price-setting

firms, in particular monopoly and duopoly, in Section 4. Section 5 provides conclusions and

proofs are relegated to the Appendix.

2 Levelized Product Cost versus Full Cost

2.1 The LC Concept

The levelized cost of a product or service seeks to identify a per unit break-even value that

a producer would need to obtain as sales revenue in order to justify an investment in a

particular production facility. In the context of electricity generation, the Levelized Cost

of Electricity concept is widely used by academic and business analysts to compare the

cost effectiveness of alternative energy sources which differ substantially in terms of upfront

investment cost and periodic operating costs. As noted in Reichelstein and Yorston (2013),

however, the formulaic implementation of this concept has been lacking in uniformity.6

We formalize the levelized product cost concept in the context of a generic capacity

investment in a new production facility. The levelized cost of one unit of output at this

6In particular, some authors have conceptualized the Levelized Cost of Electricity as the ratio of “total

lifetime cost” to “total lifetime electricity produced” (EPIA September 2011; Campbell 2008, 2011; Werner

2012). This turns out to be generally incompatible with breaking-even over the life-cycle of the project as

articulated in the verbal definition of the MIT (2007) study quoted in the Introduction.
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facility aggregates the upfront capacity investment, the sequence of output levels generated

by the facility over its useful life, the periodic operating costs required to deliver the output

in each period, and any tax related cash flows that apply to this type of facility. We treat

the applicable cost of capital, r, as exogenous and denote the corresponding discount factor

by γ ≡ 1
1+r

.7

Investment in the production facility may entail economies of scale. In particular,

• v(k) : the cost of installing k units capacity. We normalize units so that one unit of

capacity can produce one unit of output in the initial year of operation.

• T : the useful life of the output generating facility (in years) .

• xt : the capacity decline factor: the percentage of initial capacity that is functional in

year t. Production in year t is limited to qt ≤ xt · k.

The capacity decline factor reflects that in certain contexts, the available output yield

changes over time. For instance, with photovoltaic solar cells it has been observed that

their efficiency diminishes over time. The corresponding decay is usually represented as a

constant percentage factor (xt = xt−1 with x ≤ 1) which varies with the particular technology

(Reichelstein and Yorston 2013). On the other hand, production processes requiring chemical

balancing frequently exhibit yield improvements over time due to learning-by-doing effects,

e.g., semiconductors and biochemical production processes. The analysis in this paper will

pay particular attention to the “one-hoss shay” asset productivity scenario, in which the

facility has undiminished capacity throughout its useful life, that is xt = 1 for all 1 ≤ t ≤ T

and thereafter the facility is obsolete.8

The unit cost of installed capacity, v(k), represents a joint cost of acquiring one unit of

capacity for T years. In order to obtain the cost of capacity for one unit of output, the joint

cost v(k) will be divided by the present value term
∑T

t=1 xt · γt and the units of capacity

installed, k:

7If the firm’s leverage ratio is held constant, it is well known form standard corporate finance that, in

reference to the above quote in the MIT study, equity holders will receive an “acceptable return” and debt

holders will receive “accrued interest on initial project expenses” provided the project achieves a zero Net

Present Value (NPV) when evaluated at the Weighted Average Cost of Capital (WACC); see, for instance,

Ross, Westerfield, and Jaffe 2005.
8The one-hoss shay scenario is commonly considered in the regulation literature, see, for instance, Laffont

and Tirole (2000) and Rogerson (2011).
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c(k) =
v(k)

k ·
T∑
t=1

xt · γt
. (1)

We shall refer to c(k) as the unit cost of capacity. Absent any other operating costs or

taxes, c(k) would yield the break-even price identified in the verbal definition above. To

illustrate, suppose the firm makes an initial capacity investment of $v(k) and therefore has

the capacity to deliver qt = xt · k units of product in year t. If the revenue per unit is c,

then revenue in year t would be c · xt · k and the firm would exactly break even on its initial

investment over the T -year horizon.9

In addition to the initial investment expenditure v(k), the firm may incur periodic fixed

operating costs. The notation, Ft(k), indicates that the magnitude of these costs may vary

with the scale of the initial capacity investment. Applicable examples here include insurance,

maintenance expenditures, and property taxes. Unless otherwise indicated, we assume that

the firm will incur the fixed operating cost Ft(k) regardless of the output level qt it produces

in period t.10 The initial investment in capacity triggers a stream of future fixed costs and

a corresponding stream of future (expected) output levels. By taking the ratio of these, we

obtain the following time-averaged fixed operating costs per unit of output:

f(k) ≡

T∑
t=1

Ft(k) · γt

k ·
T∑
t=1

xt · γt
(2)

With regard to variable production costs, we assume a constant returns to scale technology

in the short run, so that the variable costs per unit of production up to the capacity limit are

constant in each period, though they may vary over time. We again define a time-averaged

unit variable cost by:

w ≡

T∑
t=1

wt · xt · k · γt

k ·
T∑
t=1

xt · γt
. (3)

9Throughout this section, it will be assumed that the available capacity is fully exhausted in each period,

that is qt = xt ·k. This specification will no longer apply in Sections 3 and 4, where uncertainty and demand

shocks are introduced.
10We will also consider an alternative scenario wherein the cost Ft(k) is incurred only if qt > 0. Thus, the

firm can avoid the fixed operating cost Ft(k) in period t if it idles the production facility in that period.
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Corporate income taxes affect the levelized cost measure through depreciation tax shields

and debt tax shields, as both interest payments on debt and depreciation charges reduce the

firm’s taxable income. While the debt related tax shield is already incorporated into the

calculation of the firm’s discount rate, the depreciation tax shield is determined jointly by the

effective corporate income tax rate and the allowable depreciation schedule for the facility.

These variables are represented as:

• α : the effective corporate income tax rate (in %),

• T̂ : the facility’s useful life for tax purposes (in years), which is usually shorter than

the projected economic life, i.e., T̂ < T , and

• d̂t : the allowable tax depreciation charge in year t, as a % of the initial asset value

v(k).

For the purposes of calculating the levelized product cost, the effect of income taxes can

be summarized by a tax factor which amounts to a “mark-up” on the unit cost of capacity,

c(k).

∆ =

1− α ·
T̂∑
t=1

d̂t · γt

1− α
. (4)

Since the assumed useful life for tax purposes generally satisfies T̂ < T , we will from

hereon simply refer to T as the useful life with the understanding that d̂t = 0 for T̂ ≤ t ≤ T .

The tax factor ∆ exceeds 1 but is bounded above by 1
1−α if t = 0.11 It is readily verified that

∆ is increasing and convex in the tax rate α. Holding α constant, a more accelerated tax

depreciation schedule tends to lower ∆ closer to 1. In particular, ∆ would be equal to 1 if

the tax code were to allow for full expensing of the investment immediately, that is, d̂0 = 1

and d̂t = 0 for t > 0.12

Combining the preceding components, we are now in a position to state the following

characterization of the levelized product cost:

11To illustrate, for a corporate income tax rate of 35%, and a tax depreciation schedule corresponding to

the double declining balance rule over 20 years, the tax factor would amount to roughly ∆ = 1.3.
12For investments in solar power, the U.S. federal tax code allows for a 30% Investment Tax Credit and a

five-year accelerated depreciation schedule. The effect of these tax subsidies is to lower the tax factor from

about 1.3 to about .7 with a major effect on the corresponding LC since for solar installations virtually all

costs are capacity related.
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Proposition 0 The Levelized Cost (LC) is given by

LC(k) = w + f(k) + c(k) ·∆ (5)

with c(k), w, f(k) and ∆ as given in (1) - (4).

To see that the expression in (5) does indeed satisfy the verbal break-even definition

provided above, let p denote the unit sales price. Figure 1 illustrates the sequence of annual

pre-tax cash flows and annual operating incomes subject to taxation.

-

Date

Pre-Tax

Cash Flow

Taxable

Income

0

−v(k)

1

(p− w1) · x1 · k − F1(k)

I1

...

...

...

t

(p− wt) · xt · k − Ft(k)

It

...

...

...

T

(p− wT ) · xT · k − FT (k)

IT

Figure 1: Cash Flows and Taxable Income

Taxable income in period t is given by the contribution margin in the respective period

minus fixed operating costs minus the depreciation expense allowable for tax purposes:

It = (p− wt) · xt · k − Ft(k)− dot · v(k).

As the firm pays an α share of its taxable income as corporate income tax, the annual

after-tax cash flows, CFt, are:

CF0 = −v(k)

and

CFt = (p− wt) · xt · k − Ft(k)− α · It.

In order for the firm to break even on this investment, the product price p must be such

that the present value of all after-tax cash flows is zero. Solving the corresponding linear

equation yields p = LC. In conclusion, the levelized product cost is a break-even price

which includes three principal components: the (time-averaged) fixed operating cost per
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unit of output produced, f(k), the (time-averaged) unit variable cost, w, and the unit cost

of capacity, c(k), marked-up by the tax factor ∆. It should be noted that the LC identified

in Proposition 0 is entirely a cash flow concept. Depreciation enters only through the cash

flow corresponding to the depreciation tax shield.

2.2 Relation to Full Cost

In the cost accounting literature, the concept of full cost is usually articulated as a unit cost

measure that comprises variable production cost plus (allocated) overhead costs. Overhead

costs, in turn, usually include both fixed and variable components. These components may

contain accruals that arise due to cash expenditures being allocated cross-sectionally across

products or inter-temporally across time periods, e.g., depreciation charges. This section

explores to what extent a properly constructed measure of full cost can align with the

levelized product cost identified in Proposition 0. In the context of a single-product firm,

the traditional measure of full cost in period t would be:

F̂Ct(k) =
wt · qt + Ft(k) + dt · v(k)

qt
, (6)

where qt is the quantity produced in period t, dt is the percentage depreciation charge in

period t, which may of course differ from the charge that is applicable for tax purposes. The

total depreciation charge in period t is given by dt · v(k) = dt · v · k, with
∑
dt = 1. It

is intuitively obvious that a traditional full cost measure cannot capture the LC since the

latter is a discounted cash flow concept, yet (6) does not take the time value of money into

consideration. This consideration leads to the following measure of fully loaded cost :

FCt(k) =
wt · qt + Ft(k) + [dt + r · (1−

∑t−1
i=1 di)] · v(k) ·∆

qt
. (7)

By construction, FCt > F̂Ct in each period because the former concept includes an

imputed capital charge on the remaining book value and a mark-up corresponding to the

tax factor.
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Proposition 1 Suppose the asset’s productivity profile conforms to the one-hoss shay sce-

nario (xt = 1), wt = w, and Ft(k) = f · k. With full capacity utilization, that is, qt = xt · k,

fully loaded cost is equal to the levelized product cost in each period, that is,

FCt(k) = LC(k),

provided depreciation is calculated according to the annuity method, that is, the depreciation

schedule {dt} satisfies dt+1 = dt · (1 + r).

The claim in Proposition 1 relies on the well-known observation that with annuity de-

preciation:

dt + r · (1−
t−1∑
i=1

di) =
1∑T
i=1 γ

i
.

As a consequence, the last term in the numerator of (7) is equal to c(k) ·∆, establishing the

claim.

The conditions for Proposition 1 appear rather restrictive. A more general result can

be obtained provided full cost is calculated on the basis of additional accrual accounting

concepts. First, suppose that either the unit variable costs wt or the unit fixed operating

costs Ft(k)
k

change over time. In order for the fully loaded cost FCt to align with LC, variable

and fixed operating costs can no longer be recognized on a cash basis but instead their overall

present value must be prorated across time periods by means of accruals.13

Secondly, the one hoss-shay assumption in Proposition 1 can be relaxed, provided de-

preciation is calculated according to the so-called Replacement Cost Rule. In particular,

there exists a unique depreciation rule, (d1, ..., dT ), such that for any productivity profile

(x1, ..., xT ):

xt · c(k) = [dt + r · (1−
t−1∑
i=1

di)] · v(k).

The label replacement cost accounting indicates that for this depreciation rule the remaining

book value at date t,

BVt = v(k) · [1−
t∑
i=1

di]

13Similarly, in their chapter on life cycle costing Ewert and Wagenhofer (2008) advocate the use of accruals

to assign an appropriate share of cash expenditures to the product costs reported at different stages.
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would exactly be equal to the fair market value of a used asset if there was a competitive

rental market for capacity services (Rogerson 2008).

Given the conditions of Proposition 1, we note that if the depreciation schedule {dt} is

accelerated relative to the benchmark of the annuity method, our expected measure of full

cost in (7) will still be equal to the LC on average in the sense that the present value of

the two cost measures will be identical. In particular, the use of straight-line depreciation

implies that the capital charges dt+r ·(1−
∑t−1

i=1 di) will increase over time. Thus, FCt > LC

up to some date 1 ≤ t̂ ≤ T , but FCt < LC thereafter. The common reliance on straight-line

depreciation also motivates the following observation:

Corollary 1 Suppose xt = 1, wt = w, and Ft(k) = f · k. With full capacity utilization, the

levelized product cost exceeds full cost in each period:

LC(k) > F̂Ct(k)

for 1 ≤ t ≤ T , provided depreciation is calculated according to the straight-line rule.

The traditional accounting measure of full cost based on full straight-line depreciation

entails a capacity charge of v(k)
T

per unit of capacity. In contrast, the LC requires this charge

to be v(k)∑
γt

. The corollary is based on the simple observation that for γ < 1:

T >
T∑
t=1

γt.

Most of the economics literature has abstracted from irreversible capacity investments

by assuming instead that firms can obtain production capacity in a rental market. Rental

capacity then effectively becomes a consumable input, like labor and raw materials. With a

rental market for “capital,” there is effectively no distinction between long-run and short-run

costs, as the firm can freely adjust all production inputs in any given period. Such a setting

is nonetheless of interest in order to compare economists’ conceptualization of marginal cost

with the above LC concept. In our notation, Carlton and Perloff (2005, p. 254) conceptualize

marginal cost as:

MC = w + (r + δ) · v, (8)

where δ denotes “economic depreciation.” Carlton and Perloff (2005) posit that with a

competitive market for capacity services, one unit of capacity rented for one period of time

12



should trade for (r + δ) · v, if v is the constant unit price per unit of capacity (that is,

v(k) = v · k), r is the required rate of return and δ reflects the physical decay rate of

capacity. This specification is indeed compatible with the LC formulation in Proposition 0

under the additional assumptions that assets are infinitely lived (T =∞) and the decline in

capacity follows a geometric pattern, that is, xt = xt−1. The denominator in the expression

for the unit cost of capacity c(k) in (1) then amounts to:

∞∑
t=1

xt−1 · γt = 1− x+ r.

Therefore the unit cost of capacity c(k) in (1) coincides with the marginal cost of capital in

(8), provided the economic depreciation rate δ is equated with 1− x, the capacity ’survival’

factor. This equivalence should not come as a surprise to the extent that both the LC in

Proposition 0 and the notion of a competitive rental market for capacity are pegged to an

economic break-even condition. We note that Carlton and Perloff (2005) do not include the

tax factor ∆ in their measure of marginal cost. Perhaps more importantly, they also do not

include fixed operating costs. We demonstrate below that the long-run marginal product

cost must include the fixed operating costs Ft(k), if one seeks a unit cost measure that is

to be imputed for capacity investment decisions. Fixed operating costs may be incurred in

future periods once the initial capacity is acquired, but nonetheless they are “in play,” and

therefore incremental, at the initial investment stage.

In concluding this section, we contrast our framework with that in recent studies by

Rogerson (2008), Rajan and Reichelstein (2009), Dutta and Reichelstein (2010) and Ne-

zlobin (2012). Our analysis seeks to identify the relevant cost of capacity acquisition in a

setting where such acquisitions constitute an irreversible investment in order to produce a

stream of future outputs. Once the investment decision has been made, the corresponding

expenditure, v(k), and the subsequent operating fixed costs, Ft(k), are sunk. In response to

subsequent demand fluctuations for its product, the firm is then left to optimize within its

capacity constraint, with the unit variable cost, wt, left as the only relevant cost. In contrast,

the recent studies mentioned above assume that the firm makes a sequence of overlapping

capacity investments. With an infinite planning horizon, an expanding product market and

the absence of periodic shocks to demand, the firm never finds itself in a position with excess

capacity. In effect, the sunk cost nature of past capacity investments never manifests itself
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in such a setting.14

3 Price Taking Firms

This section examines the role of levelized product costs in a market setting with a large

number of identical firms. In particular, firms are assumed to be price-takers, they have

identical cost structures and there are no barriers to entry. For expositional simplicity, we

suppose that the market for the product in question opens at date 0 (there are no market

incumbents at date 0) and effectively closes at date T , possibly because the current product

or production technology will be replaced by a superior one at that point in time.

The standard textbook description of equilibrium in a competitive industry posits that

the market price will be equal to both marginal- and average cost. If a firm is to cover its

periodic operating fixed costs so as to obtain zero economic profits, marginal cost must then

be below the market price for some range of output levels to the left of the equilibrium output

level.15 In the context of our model, suppliers make irreversible capacity investments at date

0 on the terms described in the previous section. In each subsequent period, firms adjust

prices and output to current demand conditions subject to their current capacity constraints.

The expected aggregate market demand in period t is given by Qt = Do
t (pt). The functions

Do
t (·) are assumed to be decreasing and we denote by P o

t (·) the inverse of Do
t (·). The actual

price in period t is a function of the aggregate supply Qt and the realization of a random

shock ε̃t:

Pt(Qt, ε̃t) = ε̃t · P o
t (Qt). (9)

The specification of multiplicatively separable shocks will be convenient in order to quan-

tify a threshold value for the magnitude of the periodic uncertainty.16 The random variables

14Dutta and Reichelstein (2010) allow for temporary shocks to demand, but since they also assume zero

variable costs, the firm will always produce at capacity.
15Borenstein (2000) articulates this point as follows: “It is important to understand that a price-taking

firm does not sell its output at a price equal to the marginal cost of each unit of output it produces. It sells

all of its output at the market price, which is set by the interaction of demand and all supply in the market.

The price-taking firm is willing to sell at the market price any output that it can produce at a marginal cost

less than that market price.”
16In contrast, the research reviewed by Balakrishnan and Sivaramakrishnan (2002) on capacity choice and

full cost pricing exclusively considers an additive error term for the aggregate demand function.
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ε̃t are assumed to be serially uncorrelated and to have the common density h(·) whose sup-

port is contained in the interval [ε, ε̄] with ε̄ > 1 > ε > 0. In order for P o
t (·) to be interpreted

as the expected inverse demand curve, we also normalize the periodic random fluctuations

such that:

E[ε̃t] ≡
∫ ε̄

ε

εt · h(εt) dεt = 1.

Firms in the industry are assumed to be risk neutral and to have the same information

regarding future demand.17 In particular, they anticipate that ε̃t will be realized at the

beginning of period t, prior to each supplier deciding its current level of output, less than or

equal to its capacity level. Provided each firm is a price-taker, the supply curve in period t

is illustrated by the sequence of vertical and horizontal red lines in Figure 2. In particular,

a firm exhausts its full capacity whenever the market price covers at least the short-run

marginal cost wt.

$ 

𝐿𝐶 

𝑤 

𝑘 𝑞 

Figure 2: Competitive Supply Curve with Capacity Constraint

To develop the results in this section, it will be convenient to begin with a long-run

constant returns to scale technology. Thus v(k) = v · k (and therefore c(k) = c · k) and

17We do not consider inventory build-ups in our model. In some industries, holding inventory is not a

viable option because of high inventory holding costs (e.g., electricity). The general effect of low inventory

holding costs will be to smooth out demand fluctuations. As a consequence, we would then expect the

equilibrium prices and capacity levels to approach those obtained under conditions of demand certainty.
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Ft(k) = ft · k. As a consequence, the levelized product cost LC(k) is independent of k

and will be denoted simply by LC.18 Initially, we shall also focus on a time-invariant cost-

and capacity structure such that xt = 1, wt = w, ht(·) = h(·), and Ft(k) = f · k for

1 ≤ t ≤ T . Furthermore, we consider first a setting where the expected aggregate demand

is unchanged over the T -period horizon, that is P o
t (·)=P o(·). We refer to the combination

of these assumptions as a stationary environment.

Since the levelized product cost is the threshold price at which firms break-even on

their capacity investments, one would expect that, with frictionless entry into the industry,

the competitive equilibrium price will on average be equal to the long-run unit cost. The

following result confirms this intuition and characterizes the aggregate level of capacity in

equilibrium. We denote by Pt(w, εt, K) the equilibrium price in period t, contingent on the

unit variable cost w, the aggregate industry capacity level K, and the realization of the

periodic shock εt:

P (w, εt, K) =

{
εt · P o(K) if εt ≥ ε(K,w)

w if εt < ε(K,w).

Here, ε(K,w) denotes the cut-off level for the periodic shock εt below which the available

capacity will no longer be fully exhausted. Thus, ε(K,w) · P o(K) = w for values of ε in the

range [ε, ε̄].

It will also be useful to define the Levelized Fixed Cost (LFC) as the levelized product

cost minus the unit variable cost. Thus, LFC = LC − w = f + c ·∆. Let:

LC− ≡ max

{
LC

ε̄
, LFC

}
.

Finally, we identify a condition that relates the volatility in market prices to the variable

cost of production as a percentage of the overall levelized cost.

Definition 1 Market demand is said to exhibit limited price volatility if

Prob [ε̃ ≥ w

LC
] = 1. (10)

We note that the limited volatility condition is more likely to be satisfied in capital

18The assumption of fixed operating costs that are unavoidable (even if qt = 0) is of obvious importance

here.
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intensive industries characterized by high capacity investment costs.19 If condition (10) is

not met, we shall refer to the setting as one of significant price volatility.

Proposition 2 Given a stationary environment, a competitive equilibrium entails a unique

aggregate capacity level K∗ such that the expected product price satisfies:

E[P (w, ε̃t, K
∗)] = LC.

The equilibrium capacity level K∗ is bounded by:

Do(LC−) ≥ K∗ ≥ Do(LC), (11)

with K∗ = Do(LC) if and only if price volatility is limited.

Since in a competitive equilibrium, prices are equal to the long-run marginal cost, Propo-

sition 2 justifies the interpretation of the levelized product cost as the long-run marginal

product cost. Suppose first that there are no shocks to price, that is, P (Qt, ε̃t) = P o(Qt) for

sure. Firms will then produce at full capacity in each period provided P o
t (K∗) ≥ w. The

capacity constraint prevents the industry from bidding the market price down to w. At the

investment stage, the condition of zero economic profits for all participants dictates that the

aggregate capacity level must satisfy P o(K∗) = LC. Furthermore, the stationarity of the

environment implies that in equilibrium, all capacity investments will be made initially at

date 0. In other words, in equilibrium, all firms move in lock-step with their investments at

date zero and effectively foreclose the possibility of entry in the remaining T − 1 periods.

When market demand is subject to periodic shocks, the equilibrium condition for the

optimal aggregate capacity level, K∗ becomes:

Eε [ε̃t · P o(Q∗t (ε̃t, K
∗)] = LC, (12)

where Q∗t (εt, K
∗) denotes the optimal aggregate output level, given the initial capacity level

and the realization of the current shock εt. This quantity is equal to K∗ if and only if

εt ·P o(K∗) ≥ w, that is the industry will produce at capacity given the short-run incremental

cost w. An atomistic firm can effectively “commit” to exhausting its capacity since the

market price will not drop below w as otherwise some firms would idle their capacity.20

19Applicable examples include semiconductors, electricity generation and airlines.
20An implicit assumption here is that ε · P o(0) ≥ w.
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Thus, the zero profit condition for an individual firm is given by (12); the expected product

price (bounded below by w) must be equal to the long-run marginal cost LC.

If market demand is subject to limited price volatility in the sense of condition (10), the

zero-profit condition in (12) is met at K = Ko because:

ε · P o(Ko) ≡ ε · LC ≥ w,

and therefore Q∗t (εt, K
o) = Ko. Intuitively, one might expect that higher price volatility

results in a lower aggregate capacity level than Ko ≡ Do(LC), because if condition (10) is not

met, some of the industry’s aggregate capacity will be idle with positive probability. However,

as P o(·) is decreasing, the zero economic profit condition in (12) can only be met for some

K∗ > Ko. In effect, the aggregate investment in capacity will be larger than under conditions

of limited volatility because there is to need to commit the entire LC at the investment

stage. Firms have a call option to idle parts of their capacity in subsequent periods which

allows them to avoid the variable cost in case of unfavorable demand realizations. Figure 3

illustrates the equilibrium capacity levels identified in Proposition 2.

$ 

𝐿𝐶 = 𝑃𝑜(𝐾𝑜) 

𝐿𝐶− 

𝐾𝑜 𝐾+ 𝐾∗ 𝐾 

Figure 3: Equilibrium Capacity Levels with Significant Price Volatility

The upper bound on capacity, as given by the relation Do(LFC) ≥ K∗, follows from

the observation that if the variable production costs were to be zero, that is, w = 0, firms

would always fully use the available capacity. As a consequence, the expected market price
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would then be equal to LFC = LC − w and Do(LFC) = K+. With positive variable

production costs, the aggregate capacity level must in equilibrium be correspondingly in

order to maintain zero economic profits for all firms.

The distribution of equilibrium prices for two volatility scenarios is illustrated in Fig-

ure 4. With limited volatility, the support of ε̃ is given by [ε1, ε̄1] and the market price will

vary proportionally with ε̃ at the rate P o(K∗1). With significant volatility, the support of ε̃

broadens to [ε2, ε̄2] and equilibrium prices will be a piecewise linear function of ε̃. We note

that in the low volatility scenario, prices are more responsive to a given magnitude of the

shock ε, since P o(K∗1) > P o(K∗2).

𝐿𝐶 
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𝜖2 1 𝜖2 𝜖2 (𝐾∗, 𝑤) 
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𝜖 ∙ 𝑃𝑜(𝐾1
∗) 

Figure 4: Distribution of Equilibrium Prices

The baseline result in Proposition 2 has assumed that the fixed operating costs, f , are

unavoidable. Suppose now that the firm will not incur the unit cost f if it were to idle

its entire capacity in period t. Proposition 2 then remains valid as stated, except that the

aggregate level of capacity may increase. Once the fixed cost f are “in play”, the relevant

price floor for capacity utilization in each period increases to w+ f because suppliers would

be better off withholding their capacity if the price were to drop below w + f .

19



Corollary 2 If the periodic operating fixed costs per unit of capacity, f , are avoidable, the

expected equilibrium price remains equal to the levelized product cost. The equilibrium level

of aggregate capacity increases relative to the scenario where f is unavoidable if and only if

Prob [ε̃ ≥ w + f

LC
] < 1.

The identification of the competitive market price in Proposition 2 yields several predic-

tions for the expected profitability that firms report in equilibrium. In the context of our

model, net income becomes operating income less taxes paid. If economic profitability is

assessed in terms of residual income, that is, net income minus the imputed interest charge

on book value, the Conservation Property of residual income (Preinreich 1938) implies that

the present value of future residual incomes will be zero if the expected revenue per unit

of output is indeed equal to the levelized cost. The inter-temporal distribution of the net

income numbers depends on both the financial- and tax reporting rules for operating assets.

Given the prevalence of straight-line depreciation in practice, the following result assumes

that firms rely on this rule to calculate net income.

Corollary 3 Suppose firms use straight-line depreciation for financial reporting purposes.

In equilibrium, expected net income will be positive in each period provided

α ≤ 1−
∑T

i=1 γ
i

T
. (13)

Equation (13) is satisfied for many reasonable parameter configurations. Ceteris paribus,

it will be met for a higher discount rate and investment projects with a longer useful life. The

result in Corollary 2 holds regardless of the applicable tax depreciation schedule. In fact,

the condition in (13) considers a lower bound on first-period profits that would emerge if the

initial investment were directly expensed for tax purposes. A sharper prediction regarding

net income can be obtained if one assumes that straight-line depreciation is applied for both

financial reporting and tax purposes. We then obtain the following prediction for expected

net income per unit of capacity acquired:

π = (1− α)[LC − w − f − v

T
] = (1− α)

[
v

(
∆∑T
i=1 γ

i
− 1

T

)]
> 0. (14)
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Equation (14) immediately yields an expression for what is frequently termed a “fair

profit” in government contracts. For sole-source contracting, governments frequently rely on

a cost-plus formula in which the “plus” is calibrated as a profit allowance that gives the firm

an adequate return on its invested capital. As argued in Section 2, the overall cost-plus price

must then be the levelized cost. For simplicity, suppose the contractor is obligated to deliver

one widget in each of the next T , following an initial investment of v. If cost is calculated

as full cost based on straight-line depreciation, the cost-plus price per widget becomes:

LC = (w + f +
v

T
) + η · v,

where, consistent with (14), the profit allowance, η, is calculated as a percentage of the initial

investment with

η =
∆∑T
i=1 γ

i
− 1

T
.

To illustrate, if r=10% and α = .35, the mark-up factor η stays in a relatively narrow

range of 8-10% as the duration of the contract T varies between 15 and 30 years.

The remainder of this section extends the benchmark result in Proposition 2 by relaxing

several of the assumptions invoked thus far. One consequence of the assumed constant

returns to scale technology in our model has been that the efficient scale of operation for

individual firms, that is the individual k, remains indeterminate. If the cost of acquiring

capacity v(k) and the periodic fixed operating costs Ft(k) are non-linear, the condition of

zero expected economic profits dictates that the efficient scale of operation must be chosen

such that the LC per unit of output is minimized. Referring back to the generalized definition

of LC(k) in Section 2, we define the efficient scale of operation by:

k∗ ∈ argmin{LC(k)}.

The capacity level k∗ effectively determines the efficient size of firms in the industry. The

expected equilibrium price in Proposition 2 becomes LC(k∗), while the aggregate capacity

level in equilibrium, K∗, is determined by P o(K∗) = LC(k∗).21

21Non-linearities in LC(k∗) may give rise to a traditional U-shaped average cost curve. We note, however,

that unlike the usual depiction in microeconomic textbooks the short-run marginal cost (w) is always below

the long run marginal cost (LC(K∗)) for any output level Q < K∗.
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Suppose next that the aggregate demand is no longer stationary but instead contracts over

time.22 In particular, suppose that P o
t (·)=λt ·P o(·) for all 1 ≤ t ≤ T such that λt+1 < λt < 1

for all 1 ≤ t ≤ T . We refer to such a scenario as a declining product market. We introduce

the notation λ = (λ1, ..., λT ) and define:

m(λ) =

T∑
t=1

γt

T∑
t=1

λt · γt
.

Clearly, m(λ) > 1 in a declining product market. Intuitively, one would expect the

equilibrium capacity in a declining product to be lower compared to a stationary market. The

following result confirms this intuition and shows that on average, the expected equilibrium

market price will also be higher as a consequence of market demand that diminishes over

time. For the following result, we also allow the unit variable cost, wt, to change over time.

Consistent with the notion of a declining product market, the restriction imposed is that

wt+1 ≥ wt. The importance of that restriction is that in a competitive equilibrium, all

capacity investments are made at date 0. We recall from Section 2 that in the one-hoss shay

scenario where all xt = 1,

LC ≡ LFC +

∑T
t=1wt · γt∑T
t=1 γ

t
.

Let Pt(wt, εt, λt, K) denote the equilibrium market price in period t when aggregate mar-

ket demand is given by λt ·P o(·) and the current demand shock is realized. By construction,

Pt(wt, εt, λt, K) =

{
εt · λt · P o(K) if εt ≥ ε(wt, K, λt)

wt if εt < ε(wt, K, λt),

with

ε(wt, K, λt) · λt · P o(K) ≡ wt.
23

22In contrast, the recent work on capacity investments, such as Rogerson (2008, 2011), Rajan and Reichel-

stein (2009), Dutta and Reichelstein (2010), Nezlobin (2012) and Nezlobin, Rajan, and Reichelstein (2012),

has consistently focused on expanding markets, with the consequence that firms are never left with excess

capacity.
23As before, ε(w,K, λt) is bounded by ε and ε̄.
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Proposition 3 With a declining product market, a competitive equilibrium entails a unique

aggregate capacity level K∗ such that the expected equilibrium prices satisfy:

T∑
t=1

E[λt · Pt(wt, ε̃t, λt, K)] · γt = LC ·
T∑
t=1

γt.

The capacity level K∗ is bounded by:

Do(LC− ·m(λ)) ≥ K∗ ≥ Do(LC ·m(λ)) (15)

with K∗ = Do(LC ·m(λ)) if and only if:

Prob

[
ε̃ · λT ≥

wt
LC ·m(λ)

]
= 1. (16)

For a declining product market, the zero-profit condition applies over the entire planning

horizon rather than on a period-by-period basis. In particular, the annuity value of the

levelized cost must then be equal to the present value of future expected market prices.

With a declining product market and weakly increasing variable costs, it becomes ceteris

paribus more likely that market demand exhibits significant volatility, at least in later time

periods. Formally, this can be seen from the fact that the inequality in (16) is more stringent

than (10) because m(λ) · λT < 1.

Proposition 3 can be extended to a growing product market, where λt+1 > λt > 1,

provided the growth rates are“sufficiently small.” Once demand grows too quickly, it will no

longer be an equilibrium to have all capacity investments undertaken at date 0. The resulting

scenario of sequential and overlapping investments will be similar in nature to the recent

models of Rogerson (2008, 2011), Rajan and Reichelstein (2009), Dutta and Reichelstein

(2010), and Nezlobin (2012). In particular, the main finding of Proposition 2, namely that

the expected market price in each period is equal to the levelized product cost, will continue

to hold provided (i) firms can add capacity continuously, (ii) the product market expands

monotonically over time, and (iii) there is an infinite planning horizon.
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4 Price Setting Firms

4.1 Monopoly

We now turn to a monopolistic firm that faces the same stationary environment posited

in connection with Proposition 2. In particular, suppose that expected aggregate market

demand in period t is given by qt = Do(pt). The function Do(·) is assumed to be decreasing

and we denote by P o(·) again the inverse of Do(·). The actual price in period t is a function

of the quantity supplied qt and the realization of the random shock ε̃t:

P (qt, ε̃t) = ε̃t · P o(qt). (17)

Similar to our assumptions in Section 3, the monopolist observes the realization of ε̃t

before deciding on the quantity supplied in that period. Let MRo(q) denote the marginal

revenue, with

MRo(q) ≡ d

dq
[P o(q) · q].

Throughout this section, we assume that marginal revenue is decreasing in q. Assuming

the short-run variable costs are again constant over time and equal to w and fixed operating

costs in each period are unavoidable and equal to f per unit of capacity, we obtain the

following result.

Proposition 4 Given a stationary environment, the optimal capacity investment, k∗, for a

monopolist satisfies k∗ ∈ [ko, k+], where ko and k+ are given by:

MRo(ko) ≡ LC and MRo(k+) ≡ LC−. (18)

Furthermore, k∗ = ko if and only if the condition of limited price volatility in (10) is satisfied.

Proposition 4 reinforces our general claim that the LC is the relevant cost for capacity

investment decisions. Specifically, the first-order condition for the optimal capacity level k∗

is:

Eε [ε̃t ·MRo(q∗t (ε̃t, w, k
∗))] = LC, (19)

where q∗t (εt, w,K
∗) denotes the optimal monopoly output level in period t, given the initial

capacity choice and the realization of the current shock εt. We note that MRo(q∗t (εt, w, k
∗)) =
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w if the capacity constraint does not bind for a particular εt, while MRo(q∗t (εt, w, k
∗)) =

MRo(k∗) in case εt ·MRo(k∗) ≥ w. If the limited price volatility condition in (10) holds and

therefore

εt ·MRo(ko) = εt · LC ≥ w

for all realizations of εt, the first-order condition in (19) implies k∗ = ko.

Once price volatility becomes significant, in the sense that condition (10) does not hold

and the deviation from market price exceeds the ratio of variable cost to levelized costs,

the monopolist will withhold capacity for unfavorable realizations of market demand. Like

in the competitive setting, this has the effect of driving up the amount of initial capacity

investment, because the variable cost is not yet sunk. An upper bound on the optimal

capacity level is obtained by equating marginal revenue with the levelized fixed cost. LFC

would be the relevant cost of capacity for a hypothetical firm that has no variable costs and

therefore always produces at capacity. The claim in Proposition 4 then follows, because the

marginal return on capacity investments for the hypothetical monopolist (that is, w = 0) is

always at least as large as the marginal return on investment in the actual problem.

Given our finding in Proposition 2, we conclude that with limited price volatility, the

monopolist’s capacity investment is lower than the aggregate capacity level that obtains

under competition. With limited price volatility, we also confirm the usual prediction that

the monopoly price entails a mark-up over the marginal cost, where the mark-up is given

by:

p∗(ko, εt) = εt · LC ·
E(ko)

E(ko)− 1
,

and E(ko) > 1 denotes the price elasticity of demand. In contrast to the customary textbook

solution, though, the basis for the mark-up is now the levelized product cost rather than the

short-run marginal cost.

Holding other parameters fixed, Proposition 4 suggests that the monopoly capacity in-

vestment will be higher for firms operating in environments with high price volatility. To

formalize this comparative static result, we rely on the usual metric of calling one proba-

bility distribution as “riskier” than another distribution if the first one can be expressed

as a compound lottery of the second. Formally, the distribution h2(·) is obtained by a

mean-preserving spread of h1(·), if:
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ε̃2 = µ+ ε̃1,

where µ is a random variable distributed on some interval [µ, µ̄], such that the conditional

probability distributions g(µ|ε1) satisfy:

∫ µ̄

µ

µ g(µ|ε1) dµ = 0,

for all ε1.24 Thus, ε̃2 is obtained from ε̃1 by adding a second lottery which preserves the

original mean of ε̃1.

Corollary 4 Higher price volatility results ceteris paribus in a larger capacity investment by

the monopolist.

One caveat of the preceding comparative statics result is that the cost of capital is held

constant. In other words, higher price volatility in the product market for the investment

under consideration is not assumed to alter any risk premium embedded in the cost of capital.

This specification is plausible if the investment decision under consideration is small relative

to the firm’s overall portfolio. It should also be noted that the prediction of a larger capacity

investment due to more volatility does not necessarily translate into a prediction of lower

monopoly prices on average. For a given distribution h(·), more capacity will, of course,

ensure that the quantity delivered to the market in each state will be at least as large as if

capacity were more constrained. Yet, a higher variance distribution h(·) not only results in

more capacity, it also shifts the probability mass such that the impact on expected monopoly

prices appears difficult to predict in general.

For the special case of a uniform distribution, it turns out that the expected monopoly

price is indeed lower as volatility increases. Suppose h(ε) = 1
(2·θ) . Higher values of θ then

correspond to higher volatility in the sense of a mean-preserving spread. Assuming in addi-

tion a constant elasticity of demand, we established through numerical simulation that the

expected monopoly price is monotonically decreasing in θ. Thus, for this particular setting,

we conclude that higher price volatility leads to a higher capacity investment and to lower

average monopoly prices.

24Our definition of mean-preserving spreads here follows the standard approach as in Mas-Colell, Whinston,

and Green (1995), except that we posit the existence of probability densities. The only restriction imposed

by this specification is that the distributions cannot have probability point-mass.
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4.2 Duopoly

Our findings in the previous two sections have demonstrated that the levelized poduct cost

is the relevant cost for capacity investments both in a monopoly and a competitive setting.

These findings strongly suggest that this attribute of the LC also carries over to oligopolistic

settings in which the incumbent firms make initial capacity investments and subsequently

compete subject to their capacity limitations. To model the interactions of the oligopolists,

we focus on quantity games in the sense of Cournot competition.25

Suppose two firms, identical in their products and cost structure, first make simultaneous

capacity decisions and then in each subsequent period choose production quantities simul-

taneously. These choices then determine the market price in that period. In the simplest

setting, the two identical firms i and j face a stationary environment as described in Sec-

tion 3. If the firms choose the production quantities qt = (q1
t , q

2
t ) the product price in period

t is given by:

P (q1
t + q2

t , ε̃t) = ε̃t · P o(q1
t + q2

t ). (20)

The initial capacity investments are denoted by k = (k1, k2) and thus K(k) = k1 + k2

becomes the aggregate capacity level. Given the quantity and capacity choice of firm j, the

marginal revenue for firm i is given by:

MRo(qi|qj) ≡ d

dqi
[P o(q1 + q2) · qi].

We assume that the marginal revenue of firm i is decreasing in both qi and qj. Clearly, that

condition will be met for ”standard” willingness to pay curves, including the special case of

a linear function.

Proposition 5 Given a stationary environment, suppose the limited price volatility condi-

tion in (10) holds. The following then constitutes a subgame perfect equilibrium outcome:

i) At date 0, both firms choose identical capacity investments, k1∗ = k2∗ = k∗ which satisfy

the equation:

MRo(k∗|k∗) = LC. (21)

25For ease of notation, we rely on the duopoly setting for the derivation of our results. It appears that the

results reported here carry over to settings with n competing firms without major modifications.
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ii) In subsequent periods 1 ≤ t ≤ T , each firm supplies the maximal production quantity

q1
t = q2

t = k∗.

The proof of the Proposition exploits that, regardless of the initial capacity choices and

regardless of the realization of the noise term ε̃t, there is a unique Nash-equilibrium in

the output quantities chosen at stage t. The restriction imposed by subgame perfection

therefore requires that the initial capacity choices constitute an equilibrium if followed by

the subsequent output levels corresponding to the unique equilibrium in each stage game. In

particular, these equilibrium output levels call for the firm with the lower capacity level to

exhaust its capacity provided the marginal revenue at the capacity limit still covers the unit

variable cost w. With limited price volatility, firm j will therefore anticipate full capacity

utilization whenever kj ≤ k∗. Finally, it is shown in the proof that k∗ is indeed a best

response to the same capacity level chosen by the other firm.

There are several promising directions for extending the baseline result in Proposition 5.

First, it would be desirable to characterize the entire set of equilibrium outcomes. Absent

any price volatility, the first-order conditions for a Nash-equilibrium immediately show that

the capacity levels identified in Proposition 5 constitute the unique equilibrium. Further-

more, our finding for the monopoly scenario (Proposition 4) suggests that regardless of the

degree of price volatility, the equilibrium capacity levels will be bounded above by levels that

correspond to a relevant cost equal to the levelized fixed cost, LFC.

Second, it would be natural to consider a scenario where one of the firms has a first-

mover advantage with its capacity choice. Once both firms have entered the market, albeit

sequentially, they decide their output levels simultaneously in each subsequent period. At

the initial investment stages, the Stackelberg leader can then credibly preempt capacity

investments by the follower to the extent that the price of the output to be produced still

exceeds the unit variable cost. Anticipating the follower’s reaction, the first mover then has

an incentive to choose a capacity level larger than the equilibrium level, k∗, identified in

Proposition 5.

Third, beginning with the work of Kreps and Scheinkman (1983) earlier industrial or-

ganization literature has established an equivalence between Cournot quantity competition

and Bertrand price competition subject to capacity constraints. In future work, it would be

useful to establish this equivalence for the basic set-up examined in this paper. For particular

settings, a number of papers have highlighted that this equivalence depends on additional
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specifications, including the specific “rationing rule” employed by Kreps and Scheinkman

(1983). Furthermore, the degree of price volatility in the product market demand is likely

to have an impact on any equivalence result between Cournot and Bertrand competition.26

5 Concluding Remarks

A central feature of many manufacturing and service industries is that firms have to make

irreversible upfront capacity investments in order to deliver products and services to cus-

tomers. This paper has examined the economic relevance of the so-called levelized product

cost (LC), a concept widely used in the electricity literature under the label Levelized Cost

of Electricity. This life-cycle cost is based entirely on discounted cash flows and is calibrated

as the minimum average price the firm would have to receive for the product in question in

order to justify investment in a particular production facility. We demonstrate that the LC

can be represented as a fully loaded cost, provided depreciation is calculated in a manner

that reflects the decline in productive capacity over time. In addition, this fully loaded cost

must include capital charges on the outstanding book value of the productive asset and the

pre-tax charge for capacity must be marked up by a tax factor which reflects the deprecia-

tion schedule allowable for tax purposes. As a consequence, our notion of fully loaded cost

exceeds the measure of full product cost as usually portrayed in accounting textbooks.

We demonstrate that the levelized cost can be interpreted as the long-run marginal

product cost. In particular, this cost becomes the prediction for the expected equilibrium

price in a competitive setting. For a range of alternative market settings, we show that the

LC is the relevant unit cost in the sense that firms equate the levelized product cost with the

expected marginal revenue that is obtained through the sequentially optimal output levels

in subsequent periods, given the initial capacity choice. Our results thus confirm that there

is no inherent tension between the cost accountant’s notion of fully loaded product cost of

a product and the long-run marginal cost, as commonly conceptualized in the industrial

organization literature.

The equilibrium level of capacity will generally exceed that corresponding to the expected

demand (marginal revenue) at the levelized cost if market demand exhibits significant price

volatility. Our classification of limited versus significant volatility hinges on the ratio of

26See, in particular, Davidson and Deneckere (1986), Osborne and Pitchik (1986), Hviid (1991) and Grant

and Quiggin (1996).
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short-run variable costs to levelized product costs. This ratio tends to be small in capital

intensive industries. In general, the optimal capacity level is such that the corresponding

marginal revenue is above the LFC, because firms do not need to commit to use their entire

capacity at the investment stage. Instead they retain a call option to idle parts of their

installed capacity in future periods as a response to unfavorable market conditions. This

call option becomes more valuable with higher volatility, resulting ceteris paribus in higher

capacity investments.

Moving further afield, we note that the setting in this paper has confined attention to

single product environments. In contrast, the existing work on product costing has focused

on settings where capacity installations and their attendant fixed costs are shared among

multiple products (Cooper and Kaplan 1988). In those settings, particular cost allocation

rules, like activity-based costing systems, are usually justified by the need to identify the

long-run cost of individual products, even though capacity investments are not treated as

endogenous. Our analysis lends itself to extending the existing work on alternative product

costing systems to environments in which multiple products share the same capacity instal-

lations and relevant costs are determined by means of both intertemporal and cross-sectional

cost allocations.27

The literature on intra-company pricing has struggled to find support for the common

practice of valuing transfers across segments of a firm at full cost. This difficulty may

have been in part a consequence of the assumption in those studies that upfront investments

cannot be verified by the firm’s accounting system; see, for instance, Baldenius, Reichelstein,

and Sahay (1999), Johnson (2006) and Pfeiffer, Schiller, and Wagner (2011).28 One promising

avenue for future research is to revisit the desirability of full-cost transfer prices in the context

of capacity investments. The work of Dutta and Reichelstein (2010) takes a step in that

direction, though, as mentioned above, their model confines attention to settings in which

the divisions never find themselves with excess capacity.

27With uncertain market demand, there will be a natural diversification effect arising from multiple prod-

ucts using the same scarce capacity resources.
28This literature takes the perspective that divisional investments are “soft” and relationship specific.
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6 Appendix

Proof of Proposition 2.

Denote the aggregate capacity investment at date 0 by K. We first characterize the

equilibrium level of K∗ and the expected equilibrium prices, E[P (w, ε̃t, K
∗)], under the

assumption that no firm makes additional capacity investments at any date t, 1 ≤ t < T .

We subsequently confirm that in equilibrium there are indeed no capacity investments after

date 0.

If the aggregate capacity level is K at date 0, the equilibrium price in period t is given

by:

P (w, εt, K) =

{
εt · P o(K) if εt ≥ ε(K,w)

w if εt < ε(K,w).

Here ε(K,w) denotes the unique cut-off level defined as follows:

ε(K,w) =


ε̄ if ε̄ · P o(K) ≤ w
w

P o(K)
if ε̄ · P o(K) > w > ε · P o(K)

ε if ε · P o(K) ≥ w

Clearly, ε(K,w) is weakly increasing in K.

Consider now an individual firm that has invested a capacity level k. There is no loss

of generality in assuming that this firm will indeed produce k units of output since the

product market price never falls below the short-run marginal cost w. This follows from our

assumption that

ε · P o(0) ≥ w.

Obviously, individual firms are indifferent about idling part as all of their capacity in case

P (w, εt, K) = w.29

The present value of expected future cash flows for the representative firm then becomes:

Γ(k|K) =
T∑
t=1

{
E
[
[P (w, ε̃t, K)− w] · k − f · k − α · Ĩt

]}
γt − v · k.

Here Ĩt denotes taxable income given by:

Ĩt = [P (w, ε̃t, K)− w] · k − f · k − d̂t · v · k.
29The following arguments would lead to the same conclusion if one were to assume that the firm chooses

some 0 ≤ q ≤ k in case the market price equals w in period t.
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In a competitive equilibrium, the aggregate capacity level must be chosen so that for

each atomistic firm: Γ(k|K∗) = 0. Solving this equation for the expected market price under

the assumption that q = k, the expected profit per unit of capacity acquired must be zero.

Thus:

(1− α)
T∑
t=1

E [P (w, ε̃t, K
∗)] · γt = (22)

v ·

[
1− α ·

T∑
t=1

d̂t · γt
]

+ (1− α) ·
T∑
t=1

{f + w} · γt.

Dividing by (1− α) in (22) and recalling the definition of the tax factor, ∆:

∆ =
1− α

∑T
t=1 d̂t · γt

1− α

as well as the definitions of the time-averaged unit fixed cost, f , and the time-averaged unit

variable cost, w, respectively, we conclude that the right-hand side of (22) is exactly equal

to LC ·
∑T

t=1 γ
t and therefore:

E [P (w, ε̃t, K
∗)] = LC. (23)

The expected equilibrium price in period t is equal to::

E [P (w, ε̃,K∗)] =

∫ ε(K∗,w)

ε

w · h(ε) dε+

∫ ε̄

ε(K∗,w)

ε · P o(K∗) · h(ε) dε. (24)

We next demonstrate that E [P (w, ε̃, ·)] is decreasing in K. For any K1 < K2, we can write

E [P (w, ε̃,K1)] as:

∫ ε(K1,w)

ε

w · h(ε) dε+

∫ ε(K2,w)

ε(K1,w)

ε · P o(K1) h(ε) dε+

∫ ε̄

ε(K2,w)

ε · P o(K1) h(ε) dε (25)

and similarly E [P (w, ε̃t, K2)] can be expressed as:

∫ ε(K1,w)

ε

w h(ε) dε+

∫ ε(K2,w)

ε(K1,w)

w h(ε) dε+

∫ ε̄

ε(K2,w)

ε · P o(K2) h(ε) dε. (26)

Since ε ·P o(K1) ≥ w for ε(K1, w) and P o(K1) > P o(K2), we conclude that each of the three

integrals in (25) is respectively equal to or larger than its counterpart in (26).
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Suppose next that the condition

Prob
[
ε̃ ≥ w

LC

]
= 1 (27)

is met. By construction, we then have ε(K∗, w) = ε and therefore

E [P (w, ε̃,K∗)] = P o(K∗).

Equation (23) yields that K∗ = Ko, with Ko defined as P o(Ko) ≡ LC. Conversely, if (27)

is not met, then the equilibrium capacity level must satisfy K∗ > Ko. To see this, assume

to the contrary that Ko ≥ K∗. That would lead to a contradiction since by (24) :

E[P (w, ε̃t, K
∗)] ≥ E[P (w, εt, K

o)] (28)

> P o(Ko)

≡ LC.

The strict inequality in (28) follows from the fact that if the condition in (27) is not met,

then ε < ε(Ko, w) ≤ ε̄. We thus conclude that K∗ > Ko.

To show the upper bound on K∗ claimed in Proposition 2, we note that the zero-profit

condition again stipulates that:

E[P (w, ε̃t, K
∗)] = w + f + c ·∆.

It follows from (24) that

E[P (w, ε̃t, K
∗)] ≤ ε̄ (1−H(ε(K∗, w))) · P o(K∗) + w ·H(ε(K∗, w))

where H(·) is the cumulative distribution function of the density h(·). Thus

[ε̄ · P o(K∗)− w] · [1−H(ε(K∗, w))] ≥ f + c ·∆

and therefore

P o(K∗) ≥ LC

ε̄
,

which is equivalent to K∗ ≤ Do
(
LC
ε̄

)
.

To demonstrate that K∗ ≤ Do(LFC) is another bound on the aggregate capacity in

equilibrium, let K∗∗ denote the capacity level that would emerge if w = 0 and thus LC =

LFC. Since firms would then always produce at capacity, we have:

E [P (w = 0, ε̃t, K
∗∗)] = P o(K∗∗) = LFC.
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At the same time,

E [P (w, ε̃t, K
∗)] = LC,

or equivalently

E [P (w, ε̃t, K
∗)] =

∫ ε(K∗,w)

ε

w · h(ε) dε+

∫ ε̄

ε(K∗,w)

ε · P o(K∗) · h(ε) dε = w + LFC.

It follows that

P o(K∗∗) =

∫ ε̄

ε(K∗,w)

[ε · P o(K∗)− w] h(ε) dε. (29)

If w = 0, (29) would require K∗ = K∗∗. The right-hand side of (29) is decreasing in

w since its derivative–by Leibniz’ rule–is given by: −[1 −H(ε(K∗, w))]. At the same time,

the right-hand side of (29) is decreasing in K∗. Thus for any w > 0, (29) can only hold if

K∗ < K∗∗.

It remains to show that in equilibrium all investments will occur initially, that is, no firm

will make capacity investments at a date t ≥ 1. Assume to the contrary, that some firms

will invest at date t = 0 and others (or the same firm) will possibly add additional capacity

at subsequent dates. The resulting sequence of aggregate capacity levels K = (K1, ..., KT )

will therefore be weakly increasing. The condition of zero economic profits dictates that in

equilibrium both an investment at date 0 and an investment at date 1 have expected future

cash flows with zero present values. Without loss of generality, we can normalize each one

of these investments to one unit of capacity. Thus:

Γ0(1|K) =
T∑
t=1

{
E
[
P (w, ε̃t, Kt)− w − f − α · Ĩt

]}
γt − v = 0, (30)

with Ĩt = P (w, ε̃t, Kt)− w − f − d̂t · v and

Γ1(1|K) =
T∑
t=2

{
E
[
P (w, ε̃t, Kt)− w − f − α · Ĩt

]}
γt−1 − v = 0, (31)

with Ĩt = P (w, ε̃t, Kt)− w − f − d̂t−1 · v for 2 ≤ t ≤ T − 1 and

ĨT = P (w, ε̃T , KT )− w − f − (d̂T−1 + d̂T ) · v

The investment undertaken at date t = 1 has a useful life of T periods and can thus

be used until t = T + 1. However, since we effectively assume that the market closes at
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t = T and firms will earn no revenue beyond that date, the asset is effectively impaired and

therefore can be written off at t = T . As shown above, the zero-profit condition for the

investment at date 0 requires that:

T∑
t=1

E [P (w, ε̃t,K)] · γt = LC ·
T∑
t=1

γt.

Since K1 ≤ K2 ≤ ... ≤ KT , the expected equilibrium prices are weekly decreasing over

time and
T∑
t=2

E[P (w, ε̃t, Kt)]γ
t−1 ≤ LC ·

T∑
t=2

γt−1.

Recalling that LC = w + γ + c ·∆, we find that:

Γ1(1 | K) ≤
T−1∑
t=2

{(1−α)·∆·c+α·d̂t−1·v}·γt−1+{(1−α)·∆·c+α (d̂T−1+d̂T )·v}γT−1−v. (32)

By definition of ∆ and c,

T+1∑
t=2

{(1− α) ·∆ · c+ α · d̂t−1 · v}γt−1 = v.

Therefore (32) can be expressed as:

Γ1(1 | K) ≤ α · d̂T · γT−1 − [(1− α) ·∆ · c+ α · d̂T · v]γT . (33)

Thus it remains to show that the right-hand side of (33) is strictly negative, or equivalently,

α · d̂T < [(1− α) ·∆ · c+ α · d̂T · v] · γ. (34)

Since

∆ =
1− α ·

∑T
t=1 d̂t · γt

1− α
,

c =
v∑T
i=1 γ

i
,

and (1− γ) = r · γ, the inequality in (34) becomes:

1∑
γi

[1− α
T∑
i=1

d̂i · γi] > α · dT · r ·
T∑
i=1

γi,

or equivalently:

1− α [d̂1 · γ + ...+ d̂T [γT + r

T∑
i=1

γi]] > 0.
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This last inequality indeed holds because for any T,

γT + r ·
T∑
i=1

γi = 1,

and d1 · γ + d2 · γ2 + ...dT−1 · γT−1 + dT < 1.

Proof of Corollary 2. If fixed operating costs are avoidable and the aggregate capacity

level is equal to K, the expected equilibrium price in period t is equal to:

E [P (w′, ε̃, K)] =

∫ ε(K,w′)

ε

w′ · h(ε) dε+

∫ ε̄

ε(K,w′)

ε · P o(K) · h(ε) dε.

where w′ ≡ w+f . We note that ε(K,w′) is weakly increasing in w′. Similar to the argument

in the proof of Proposition 2, we next demonstrate that E [P (w′, ε̃, ·)] is increasing in w′. For

any w′1 < w′2, we can write E [P (w′1, ε̃, K)] as:

∫ ε(K,w′1)

ε

w′1 · h(ε) dε+

∫ ε(K,w′2)

ε(K,w′1)

ε · P o(K) h(ε) dε+

∫ ε̄

ε(K,w′2)

ε · P o(K) h(ε) dε. (35)

Similarly E [P (w, ε̃,K2)] can be expressed as:

∫ ε(K,w′1)

ε

w′2 h(ε) dε+

∫ ε(K,w′2)

ε(K,w′1)

w′2 h(ε) dε+

∫ ε̄

ε(K,w′2)

ε · P o(K) h(ε) dε (36)

Since ε·P o(K) ≥ w for ε > ε(K,w) and w′1 < w′2, we conclude that each of the three integrals

in (35) is respectively at least as large as its counterpart in (36). It should be noted that the

claimed monotonicity here is strict whenever ε(K,w′2) > ε.

Denote the equilibrium capacity levels with avoidable and unavoidable fixed costs by K∗

and K∗∗, respectively, it follows directly from the arguments in Proposition 2 that:

E [P (w, ε̃,K∗)] = E [P (w + f, ε̃, K∗∗)] = LC.

Since E [P (w, ε̃,K)] is decreasing in K and strictly increasing in w whenever ε(K,w+f) >

ε, we conclude that K∗∗ > K∗ whenever

Prob[ε̃ ≥ w + f

LC
] < 1,

as claimed in Corollary 2.
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Proof of Corollary 3.

Under the assumptions of Proposition 2, the expected net income per unit of capacity in

equilibrium is given by:

πt = LC − w − f − dt · v − α · It,

where It denotes the expected taxable income in period t:

It = LC − w − f − d̂t · v.

With straight-line depreciation, dt = 1
T

. Direct substitution yields:

πt = (1− α)(LC − w − f)− v(
1

T
− α · d̂t).

The expression for c in equation (1) yields:

πt = v

[
(1− α) · ∆∑T

i=1 γ
i
− 1

T
+ α · d̂t

]
.

Recalling the definition of the tax factor ∆, we have

πt = v

[
1− α ·

∑T
i=1 d̂i · γi∑T

i=1 γ
i

− 1

T
+ α · d̂t

]
.

Thus πt ≥ 0 if and only if

1−
∑T

i=1 γ
i

T
≥ α

[
T∑
i=1

d̂i · γi − d̂t ·
T∑
i=1

γi

]
≥ 0.

This last inequality indeed holds whenever (13) is met, since:

T∑
i=1

d̂i · γi − d̂t ·
T∑
i=1

γi ≤ 1,

for any depreciation rule (d̂1, ..., d̂T ).

Proof of Proposition 3.

Denote the aggregate capacity investment at date 0 by K. We characterize the equi-

librium level of K∗ and the expected equilibrium prices, E[P (wt, ε̃t, λ,K
∗)], under the as-

sumption that no firm makes additional capacity investments at any date t, 1 ≤ t < T .
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Arguments similar to the ones provided in the proof of Proposition 2 show that indeed no

late entrants could break even on their investments. This is a fortiori true if the product

market is declining over time and the unit variable costs are (weakly) increasing.

If the aggregate capacity level is K at date 0, the equilibrium price in period t is given

by:

P (w, εt, λt, K) =

{
εt · λt · P o(K) if εt ≥ ε(K,wt, λt)

wt if εt < ε(K,wt, λt).

Here ε(K,wt, λt) denotes the unique cut-off level defined as follows:

ε(K,wt, λt) =


ε̄ if ε̄ · λt · P o(K) ≤ wt
wt

λt·P o(K)
if ε̄ · λt · P o(K) > wt > ε · λt · P o(K)

ε if ε · λt · P o(K) ≥ wt

Clearly, ε(K,wt, λt) is increasing in wt, weakly increasing in K and decreasing in λt.

For an individual firm that has invested a capacity level k, there is again no loss of

generality in assuming that this firm will also produce k units of output since the product

market price never falls below the short-run marginal cost wt. The present value of expected

future cash flows for the representative firm then becomes:

Γ(k|K) =
T∑
t=1

{
E
[
[λt · Pt(wt, ε̃t, λt, K)− wt] · k − f · k − α · Ĩt

]}
γt − v · k,

with taxable income given by:

Ĩt =
[
γt · Pt(wt, ε̃t, λt, K)− wt

]
· k − f · k − d̂t · v · k.

Solving the equation Γ(k|K∗) = 0 yields:

T∑
t=1

λt · E [Pt(wt, ε̃t, λt, K)] · γt =
T∑
t=1

γt · LC, (37)

where

λt · E [Pt(wt, ε̃t, λtK)] =

∫ ε(K,wt,εt)

ε

wt · h(ε) dε) +

∫ ε̄

ε(K,wt,εt)

ε · λt · P o(K) · h(ε) dε.

Suppose now that K∗ ≤ Ko. We obtain:
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T∑
t=1

λt · E [P o(wt, ε̃t, λt, K
∗)] · γt ≥

T∑
t=1

λt · E [P o(wt, ε̃t, λt, K
o)] · γt

≥
T∑
t=1

λt · P o(Ko) · γt

= LC ·m(λ).

It follows that K∗ ≥ Ko for otherwise (37) could not hold. Furthermore, K∗ = Ko requires

that

Prob

[
ε̃ · λT ≥

wt
LC ·m(λ)

]
= 1,

otherwise the second inequality in (38) could not hold. To establish the claim on the upper

bound for K∗, we note that

T∑
t=1

λt·E [Pt(wt, ε̃t, λt, K
∗)]·γt ≤

T∑
t=1

{
λt·P o(K∗)·[ε̄ · (1−H(ε(K∗, w, λt))]+wt·H(ε(K∗, wt, λt)

}
γt.

(38)

We recall that with time-variant variable costs:

LC ≡ LFC +

∑T
t=1 wt · γt∑T
t=1 γ

t
.

In conjunction with the inequality in (37), (38) yields:

T∑
t=1

LFC · γt ≤
T∑
t=1

[ε̄ · λt · P o(K∗)− wt] (1−H(ε(K∗, wt, λt)) · γt

≤
T∑
t=1

[ε̄ · λt · P o(K∗)− wt] · γt

=
T∑
t=1

λt · γt · ε̄ · P o(K∗)−
T∑
t=1

wt · γt.

Since

LC ·
T∑
t=1

γt =
T∑
t=1

wt · γt + LFC ·
T∑
t=1

γt,

we conclude that

LC ·m(λ) ≤ ε̄ · P o(K∗),
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or equivalently,

K∗ ≤ Do

(
m(λ) · LC

ε̄

)
.

The proof that K∗ must also satisfy

K∗ ≤ Do (m(λ) · LFC)

proceeds analogously to the one given in connection with Proposition 2.

Proof of Proposition 4.

Given any capacity investment k at date 0, the monopolist will choose the optimal quan-

tity in period t as

q∗(w, εt, k) =

{
k if εt ≥ ε(k, w)

q(w, εt) if εt < ε(k, w),

where q(w, ε) solves the equation: ε ·MRo(q(w, ε)) = w, and

ε(k, w) =


ε̄ if ε̄ ·MRo(k) ≤ w

w
MRo(k)

if ε̄ ·MRo(k) ≥ w ≥ ε ·MRo(k)

ε if ε ·MRo(k) ≥ w

We note that ε(k, w) is increasing in k and that q(w, ε) < k whenever ε < ε(k, w).

For any capacity level k, the present value of expected cash flows becomes:

Γ(k) =
T∑
t=1

{E
[
ε̃t ·Ro(q∗(w, ε̃t, k))− w · q∗(w, ε̃t, k)− f · k − α · Ĩt

]
} · γt − v · k,

where

Ĩt = ε̃t ·Ro(q∗(·))− w · q∗(·)− f · k − d̂t · v · k.

Define

Γ̂(k) =
Γ(k)

(1− α) ·
T∑
t=1

γt.

Recalling the definition of the unit capacity cost, c, the tax factor, ∆, and the levelized

fixed cost, LFC, we obtain:

Γ̂(k) = E[ε̃ ·Ro(q∗(w, ε̃, k))− w · q∗(w, ε̃, k)]− LFC · k.
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Thus,

Γ̂′(k) =

∫ ε̄

ε(k,w)

[ε ·MRo(k)− w] h(ε) dε− LFC, (39)

where MRo(k) = d
dk
Ro(·). Since for any random variable X, E[f(X)] ≤ E[max{0, f(X)}],

it follows that

Γ̂′(k) ≥
∫ ε̄

ε

[ε ·MRo(k)− w] h(ε) dε− LFC

= MRo(k)− w − LFC (40)

= MRo(k)− LC. (41)

By definition MRo(ko) ≡ LC. Therefore k∗ ≥ ko. We next demonstrate that k∗ = ko if and

only if the condition

Prob
[
ε̃ ≥ w

LC

]
= 1 (42)

holds. This condition is equivalent to ε(ko, w) = ε, because ε(ko, w) > ε if and only if

ε ·MRo(ko) < w. Referring back to (39), we obtain:

Γ̂′(ko) = MRo(ko)− LC = 0

if and only if condition (42) is met. To demonstrate the upper bound on k∗ claimed in

Proposition 4, we note that

Γ̂′(k) ≤ [MRo(k) · ε̄− w] · [1−H(ε(k, w))]− LFC.

≤ ε̄ ·MRo(k)− LC.

Therefore Γ̂′(k) < 0 for any k > k+ with k+ given by MRo(k+) = LC
ε̄

.

To show that an upper bound on capacity is also provided by k+ defined by the require-

ment that MRo(k+) = LFC ≡ LC − w, we first state an auxiliary result which ranks the

maximizers of two functions, Γ1(k) and Γ2(k). Suppose both functions are differentiable on

the positive real line.

Auxiliary Lemma: If k∗1 is the unique maximizer of Γ1(k) and k∗2 is the unique maximizer

of Γ2(k), then k∗2 ≥ k∗1 provided Γ′2(k) ≥ Γ′1(k) for all k.

Proof of Auxiliary Lemma: Suppose to the contrary that k∗1 > k∗2. By definition:

Γ1(k∗1) > Γ1(k∗2) and Γ2(k∗2) > Γ2(k∗1).
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Adding these two inequalities yields:

Γ1(k∗1)− Γ1(k∗2) > Γ2(k∗1)− Γ2(k∗2),

or ∫ k∗1

k∗2

[Γ′1(u)− Γ′2(u)] du > 0.

Since Γ′1(u) ≤ Γ′2(u), we obtain a contradiction.

To complete the proof of Proposition 4, we identify Γ1(·) in the Auxiliary Lemma with

the monopolist’s problem, that is, Γ1(k) = Γ̂(k). Let Γ2(k) be given by the corresponding

function when w = 0. Thus Γ2(k) = Γ̂2(k|w = 0). If w = 0, the firm always produces at

capacity and therefore k∗2 is such that MRo(k∗2) = LFC. To invoke the Auxiliary Lemma,

we verify that

Γ′2(k) = MRo(k)− LFC

≤ Γ′1(k) =

∫ ε̄

ε(k,w)

[ε ·MRo(k)− w]h(ε) dε− LFC.

This inequality indeed holds because

∂

∂w

∫ ε̄

ε(k,w)

[ε ·MRo(k)− w]h(ε) dε = − [1−H (ε(k, w))] ≤ 0,

and

MRo(k) =

∫ ε̄

ε(k,w=0)

ε ·MRo(k) · h(ε) dε.

Thus the monopolist’s optimal capacity choice satisfies k∗ ≤ k∗2, where MRo(k∗2) = LFC.

Combining the two upper bounds on capacity, we conclude that k∗ ≤ k+, where

MRo(k+) = LC− = max

{
LFC,

LC

ε̄

}
.

Proof of Corollary 4: To show that the monopolist will choose a higher level of capacity

if market volatility increases in the sense of a mean-preserving spread, we again invoke the

Auxiliary Lemma in the Proof of Proposition 4. Specifically, we show that

Γ̂′(k|h2(·)) ≥ Γ̂′(k|h1(·))
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for all k. As shown in connection with Proposition 4:

Γ′(k|h1(·)) =

∫ ε̄

ε(k,w)

[ε ·MRok)− w]h1(ε1) dε1 − LFC

=

∫ ε̄

ε

V (ε1) · h1(ε1) dε1 − LFC

where30

V (ε) ≡

{
0 if ε(k, w) ·MRo(k) < w

ε ·MRo(k)− w if ε(k, w) ·MRo(k) ≥ w.

If ε̃2 is obtained by a mean-preserving spread of ε̃1, then ε̃2 = ε̃1+µ̃ where µ̃ is an unbiased

random variable such that ∫ µ̄

µ

µ · g(µ|ε1) dµ = 0

for all ε1. Since h2(ε2) = g(µ|ε1) · h1(ε1), we obtain:

Γ̂′(k|h2(·)) =

∫ ε̄1

ε1

∫ µ̄

µ

V (ε1 + µ) · g(µ|ε1) · h1(ε1)dµdε1 − LFC

≥
∫ ε̄1

ε1

V

(
ε1 +

∫ µ̄

µ

µ · g(µ|ε1) dµ

)
h1(ε1)dε1 − LFC

=

∫ ε̄1

ε1

V (ε1) h1(ε1) dε1 − LFC

= Γ̂′(k|h1(·)).

The preceding inequality follows from Jensen’s inequality and the convexity of V (·) in ε.

Thus, k∗2 ≥ k∗1.31

Proof of Proposition 5.

Claim 1: For every pair of capacity investments (k1, k2) and every realization of εt, there

exists a unique Nash equilibrium

(q1
t (k

1, k2, εt), q
2
t (k

1, k2, εt))

in period t.

Proof of Claim 1: Define q(εt) by the requirement that

εt ·MRo(q(εt)|q(εt)) = w.

30For notational simplicity, we suppress the dependence of V (·) on k and w.
31The Auxiliary Lemma requires unique maximizers which follows from the fact that Γ′(·|hi(·)) is strictly

decreasing.
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Thus q(εt) denotes the equilibrium quantities the parties would supply in a symmetric,

capacity-unconstrained equilibrium. We distinguish three scenarios.

Scenario 1: ki > q(εt) for 1 ≤ i ≤ 2. In this scenario, both firms will supply qt = q(εt) in

equilibrium. To see that this equilibrium is unique, suppose, to the contrary, that another

pair (q1, q2) constitutes a Nash equilibrium in period t. Then, if qi < ki, it must be that

εt ·MRo(q1|q2) = w = εt ·MRo(q2|q1)

which implies qi = q(εt). Similarly, there cannot be an equilibrium in which either qi = ki

or both.

Scenario 2: ki ≤ q(εt) for 1 ≤ i ≤ 2. In this case, the unique equilibrium is for both firms

to supply qit = ki in period t because

εt ·MRo(qi|kj) ≥ w

for all qi ≤ ki.

Scenario 3: ki > q(εt) and kj ≤ q(εt). It is then a Nash equilibrium for firm j to supply kj

and for firm i to choose:

qit ∈ argmax
q≤ki
{εt ·Ro(q|kj)− w · q}.

Clearly, there cannot be an equilibrium in which qj < kj, regardless of whether firm i

exhausts its available capacity or not.

Claim 2: Given the limited price volatility condition, suppose that firm j chooses the

capacity level kj = k∗. In equilibrium, firm j will then supply qjt = k∗ for all εt and any

capacity level ki.

Proof of Claim 2: If ki ≤ k∗, the condition of limited price volatility ensures that

εt ·MRo(k∗|ki)− w
≥ εt ·MRo(k∗|k∗)− w
= εt · LC − w ≥ 0.

Thus firm j will supply kj = k∗ for any εt and any qi which satisfies qi ≤ ki ≤ k∗.

If ki > k∗ and kj = k∗, the unique Nash equilibrium (q1
t (k

1, k2, εt), q
2
t (k

1, k2, εt)), given

εt, must correspond to either Scenario 2 or 3 in the proof of Claim 1. To see this, we note

that in Scenario 1:

ki > kj = k∗ > q(εt),
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and

εt ·MRo(q(εt)|q(εt)) = w.

Yet that would lead to a contradiction on account of the inequalities:

εt ·MRo(q(εt)|q(εt)) > εt ·MRo(k∗|k∗) = εt · LC > w.

Thus, either Scenario 2 or 3 applies if kj = k∗ and, as shown in Claim 1, in either one of

these qjt (k
i, kj = k∗, εt) = k∗.

Claim 3: Given kj = k∗, it is a best response for firm i to choose the initial capacity level

ki = k∗.

Proof of Claim 3: The argument adapts the notation in the proof of Proposition 4. Given

any ki and qi(ki, kj = k∗, εt), firm i’s Nash equilibrium quantity in period t is given by

qi(ki, k∗, εt) =

{
ki if εt ≥ ε(ki|k∗)

q(k∗, εt) if εt ≤ ε(ki|k∗)

where q(k∗, εt) is uniquely determined by

εt ·MRo(q(k∗, εt)|k∗) = w,

and

ε(ki|k∗) =


ε̄ if ε̄ ·MRo(ki|k∗) ≤ w
w

MRo(ki|k∗) if ε̄ ·MRo(ki|k∗) ≥ w ≥ ε ·MRo(ki|k∗)
ε if ε ·MRo(ki|k∗) ≥ w.

It follows that ε(ki|k∗) is increasing in ki and q(k∗, εt) < ki if and only if εt < ε(ki|k∗).
Given kj = k∗, firm i’s objective function can then be expressed as

Γ(ki|k∗) =
T∑
t=1

{
E
[
ε̃t ·Ro(qi(ki, k∗, εt)|k∗)− w · qi(ki, k∗, εt)− f · ki − α · Ĩt

]}
γt − v · ki,

where

Ĩt = εt ·Ro(qi(·)|k∗)− w · qi(·)− f · ki − dt · v · ki.

Using the same normalization as in the proof of Proposition 4, we define:

Γ̂(ki|k∗) = Γ(ki|k∗) · 1

(1− α) ·
∑T

t=1 γ
t
,
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with

Γ̂(ki|k∗) = E
[
ε̃ ·Ro(qi(ki, k∗, ε̃)|k∗)− w · qi(ki, k∗, ε̃)

]
− LFC · ki.

It follows that

∂

∂ki
Γ̂(ki|k∗) =

∫ ε̄

ε(ki|k∗)
[ε ·MRo(ki|k∗)− w] h(ε) dε− LFC. (43)

The right-hand side of (43) is decreasing in ki. Furthermore, the limited price volatility

condition implies ε(k∗|k∗) = ε. Since, by definition, MRo(k∗|k∗) = LC, it follows that:

∂

∂ki
Γ̂(ki|k∗)

∣∣∣
ki=k∗

= 0,

which shows that ki = k∗ is a best response to kj = k∗. Thus, (k1, k2) = (k∗, k∗) followed by

(q1
t , q

2
t ) = (k∗, k∗) in each period is a subgame perfect equilibrium outcome.
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